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A plane mixed problem of elasticity theory for an infinite wedge is considered. There 
is a slit of finite length on the bisector of the wedge angle, and a normal loading of inten- 

sity os = - q(r) is applied to its surface. 
The case when the relative distance p between the slit and the wedge vertex is zero 

was investigated in [l and 23. A solution of the considered problem is found for large 
values of the parameter p.‘ The solution of the mentioned problem is expounded below 

for the whole range of variation of the parameter 0 < p < 00. A method whose idea is 

expounded in [4] is used in the solution. The method permits reduction of the problem 
to the determination.of the function y(r). which describes the shape of the slit surface, 
from a Fredholm integral equation of the second kind. Moreover, in contrast to [l and 21. 

an approximate solution of the problem is obtained here for the case p = 0 in the form 
of formulas of simple structure. The mathematical apparatus of the Wiener-Hopf method 
is hence used. 

1, Formulation of the problem. In an elastic wedge bounded by the rays 
ft=fa,(O<r<oc) lettherebeaslotoccupyingthedomain: 8=O,a<;<<. 

The slot is kept in the open statebyOnormal forces q(r) applied to its surface. The fol- 

lowing conditions may hence be satisfied on the wedge faces: (1) the wedge is squeezed 
between two smooth stiff bases, there are no friction forces between the bases and the 
wedge; (2) total adhesion occurs between the wedge and the stiff bases; (3) the faces 

of the wedge are stress-free. To determine the function y(r) and the coefficient of nor- 
mal stress intensitv N at r = o and r = b (8 = 0). 

The problem can be reduced to determining y(r) from the integral equation [3] 

!yQ (lo+-)+= -g[p(r)+R]. Q(t)=jL(u, a)sin (ul)du, A=2(1 
E 
- v2) 

(1 0 

Here R is a constant determined in the solution of the equation, N is Young’s modu- 
lus, v the Poisson coefficient, and the function’ p(r) is connected with q(r) by means 
of the relationship 

p(r) = S q(r)dr (1.2) 

For the conditions considered on the wedge faces the function L(u, a) is 

(1) L (~4, a) = 
sh 2ua + u sin 2% 

ch 2ua-cos 2u 

732 

(1.3) 
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(2) L (u, a) = 
x ch 2ua.+ I42 (I - co.9 201) + 6.5 (1 + x1) 

x sh 2ua --u sin 2u 
(K=3-4V) 

(3) L (u, a) = 2 
sha ua - us sins a 
sh 2ua + u sin 2a 

Let us note the following properties of the function L(u, a): 

L(u, a) + i i- 0(e-2ua) for u + 00 (for conditions (I), (2), (3)) 

L(u, a) --, C-‘JW i- O(G) for u + 6 (for conditions (I), (3)) 

L(u, a) 3 (JW)“d + O(u) of u + 0 (for condition (2)) 
(i-4) 

i-cos 2% 
C=n2u+sin22 

(for condition (1)). 

2a + sin 22 (i + x)’ 
(1.5) 

c=n2,, - 2 sina a 
(for condition (3)). d = rt 4ua - 2 sin 2u 

The case a = n for conditions (1) on the wedge faces, which corresponds to the prob- 

lem of a slot in a plane, will be henceforth excluded from consideration. 

4. Solution of the problem for condition, (1) rnd (3) on the 
wedge frcel. Let us approximate the function L(u, a) as follows: 

Ml 
d 

t(u, a)=thy+ x A,- (i = i, . . ., MI) (24 
I=1 ch n” 

mi 
It is easy to see that the approximation (2.1) actually reflects the behavior of the 

function L(u, a) at zero and infinity for the considered conditions on the wedge faces. 

Let us present values of the quantities 

pj=max[&IL(u, a)-tthFI]lOO% 

for conditions (i)(j = l)and (3) (j = 3)on the wedge faces 

a= 30 45 60 Xi 96 105 120 135 156 165 ii30 (9 

h= 48 25 10 1.5 0 1 4 8 4 46 - (%) 

b = > 50 > 50 42 18 2.5 4.5 4 2 0.5 0.05 0 (%). 
Substituting ,qu, a) in the form (2.1) into (1.1). and taking the inner integral, we find 

C b. r (p) PO+’ dp = _ fi, (r) 
I p” - rc (a < r B b (2.2) 
P 

(2.3) 
U 

JNI 

0 (r, r) =& 2 Aim,' 

o.6(mi-c) mi 
r tr - rmi) [20 (rr)mi - (r”‘-- rmi)2] (2.4) 

i=l t 
l-ll.6fni $I'+ 3,' 

Applying the inversion formula to (2.2). we obtain h 
Y 

7 (r) = $ VrC (rc- UC) (bc - rC) {i s I/F&(p) + flldp + 

pc-ldp 
b 

u P I/(P~--? (bC - P”) (P”- rc) 

+~~(pC_aC)(r--,7(pC_rC) ~f(z)m('v p) dr} 
(2.5) 

(1 
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Here the boundedness condition of the function y(r) 
b 

s 

p’-‘f (P) dp 

should be satisfied 163. 
D T/(p” - UC) (bC - p”) = O (2.6) 

The integrals in (2.5) are understood in the Cauchy principal value sense. Moreover, 
the double integral in (2.5) admits an interchange in the order of integration since y(r) 

and pc-r[(pC - UC) (bc - PC)]-‘Ia o(r, p) are integrable functions in [a, b] . 
Substituting j(p) in the form (2.3) into (2.6), and eliminating R from the obtained 

relationship and from (2.5). we obtain a Fredholm integral equation of the second kind 

for Y(r) 

r (r) - - & -Jr” (rC- aC) (bC L rC) 

a 

+ ‘2 A (r) [ S_1 + \ T (4 Qa (5) dz] 
a 

b 

T-t (4 = 5 6% (P) do 
b 

8-r = S Vi-h (P) dp 

a~~(pC--C)(bC-pC)(pC--C)’ a P I/(P’ - a”) (bC - P”) 

(2.7) 

b b 

*r (% r, = A (I ?cp” _ =C) (be _ p”) (p” _ rC) ’ s P’-‘o (5, P) dp 
” (‘) = A a I/(p” - &) (bC - p”) s 

~“~0 (f, P) dp 

F (6, k) 
A (r) = -qq- E (k) - E (8, k) + v(rc -;‘$$ 

k = v/1-_ e = afb, 6 = arc sin {(rc - ac)“* [rc (1 - e,c)]“‘l) 

Here F(6, k) and E(6, k) are elliptic integrals of the first and second kinds, respectively; 
K(k) and E(k) are the complete elliptic integrals of the first and second kinds, respec- 
tively. 

We seek the solution (2. ‘7) by successive approximations 

y(r) = y0W + n(r) + . . . + yn (4 + . . . (2.8) 

As the first approximation we take an expression corresponding to the first member of 

the approximation (2.1). The zero and successive approximations are determined by 

means of Formulas 

r, (r) = 2 frc (rc - a”) (be - rc) T,, (r) + z A (r) S,,_l (n =o, 1, . ..) (2.9) 

b b 

T,,(r)=Sr,(r)P1@, r)dr, Sn=~y,,(r)Q~(r)dr (n=O, 1, . ..I 

a a 

For r = a ,and r = b the normal stress intensity coefficient N is determined from 
the following conditions: 

N,= limA?r-a-$-, 
- dy 

N,=’ FFbAJfb-r dr (2.10) 
+-WI 

Substituting y(r) in the form (2.8) into (2.10) and taking account of (2.9). we obtain 
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3. Solution of the problem for the C&IO when condition (4) ir 
rrti#f!ed on the wrdga frca:. Let 

0 = I, . . . . ‘Ma) (3.1) 

approximate the function Qu, a) . 
It is seen from (3.1). (1.4) and (1.5) that the approximation (3.1) truly reflects the 

behavior of the function L(u, a) .at zero and infinity when condition (2) is satisfied on 
the wedge face . Values of the quantity 

b=tiax[Lq&jI~(u. a)-cth?]] i00q/, for ~~0.3 
are presented below 

a= 153045 60 75 90 105 120 135150 165 160 0 

& = 10 5 7 10 10 6.5 5.5 3 i 0.5 1.5 1.5 (W) 

Substituting L(u, a) in the form (3.1) into (1.1). we find 
b b 

d 
pd-‘r (P) dP 

d rl =-~~IPWWI-$- 
P --r c r (r) cp (7, r) d* 

n b 

(rr) (r *4 9 - /+) 

i=l 7(?"4 + my 

(3.2) 

(3.3) 

Applying the inversion formula to (3.2). we obtain a Fredholm integral equation of the 
second kind in v(r) h 

-f (r) = -$- f (r” - ad) (bd - rd) [P+ (r)+i r(r)Q)(r, r)dr] (3.4) 
a 

P~-‘P (P) dP 
‘-’ (r’=~~(pd_~d)(ad-pd)(pd-rd) 

9 @(r, r) = pd-‘cp (r P) dP 

$ I/(pd-ad)(bdlpd)(pd-rd) 

The integrals in (3.4) are understood in the Cauchy principal value sense. We seek 

the solution of (3.4) in the form (2.8). Furthermore, reasoning as in the solution of(2.7). 
we obtain b 

7” (4 = nA L ~(rd-ad)(ad--d)Pn_l(r), 
n 

e=o, 1, . ..) 
N = d ~/;ibd~/ed(i-ctd) m 

a 
2Jt JG 2 p,-t @)B Nb = d ‘;I $; -ed i Pn_r (b) (3.6) 

n=o n=o 
Let us note that the zero approximation of the solution of (3.2) corresponds to the first 

member of the approximation (3.1). 

4. Solution of the problem for tha CLBO when the tlot (tart) 
from the vertax of the wedge angle (a = 0). Let us differentiate both sides 
of (1.1) with respect to r . Then integrating the obtained relationship by parts, we find 
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Let us make a change of variable in (4.1) by means of Formulas 

‘~=ln bfp, t=ln b/r 

and let us introduce the notation 

(4.2) 

c-7 y’(be-‘) = I#($, i/de’-’ g(be’f) = W+ (t) (4.3) 

We hence obtain o. 

i 
s 

$ (r) Q (T - t) dr = nw, (t) (Odt<m) (4.4) 

Let us apply a Fou;ier transformation in the variable t to (4.4) 

Y+ (s) L(s, a) = w* (s) + w- (8) (4.5) 

Here Ii’+ (s) and Y, (s) are the Fourier transforms of the functions w, (1) and j),(f); 
W, (s) is the Fourier transform of the function corresponding to the stress originating in 
the wedge on its extension beyond the slot. Moreover, let us consider the case when con- 
ditions (1) and (3) are satisfied on the wedge faces. To carry out the factorization, let 
us represent the function L as follows 171: 

(4.6) 

It is seen from (4.6) (1.3) and (1.4) that the function H(s) is regular in the strip 

&(- Er < Jms < E,) (E,<Di), is even in s, and positive on the real axis where H(O)=1 

and H(s) = 1 -b WY for Is] + 00 in the strip of regularity. It hence follows that the 
function x(s) = In&(s) is also regular in the strip I& and eorl~ 

. 

x (*v) = x, PI+ x_ (4, x*w=*~ $ *dE (4.7) 
*Fir, 

and 0 < rr < El, the function x+(s) is regular in the half-plane Jms > - El, the func- 
tion X,(S) is regular in the half-plane Jms < E 1. Taking account of (4.6). (4.7) we can 

write (4.5) as 

T+(S)H+(S) cz--g,(s)=L(s)+ H;;;:;;;z 

a+i% 

g, (8) = & 
w+ (6) (f - iE1) dl w+ (3 

_-co+ir, 6H_ (b) )/I, (c - S) ' g-(s) = L_(sB al -'+ (S) s 

H+ (4 = exp x+ (4 H, (4 = exp x_ (4 

Let q(r) = q = con& In this case 

W+(s)=- -L1, 
A )/zn S + ‘ 

Substituting (4.11) into (4.9) and utilizing residue theory, we find 

g, (s) = - 
Q (1 + Ei) 

A ‘t/G I/=-i VI + DIH_ (- i) (i+ a) 

It follows from (4. ‘7) and (4.10) that 
m 

” 

(4.3) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 
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Both sides of (4.8) coincide in the common strip of regularity IIs [sup (-El, - 1) < 
<‘ Jmr < 0] with some function G(r) which is regular in the whole complex s plane. 
Since y(t) i i/p as t-, f0, then ‘y,(s)-i/)r;- as a + 00 in the upper half-plane. 
Utilizing estimates of the functions Y+(s), H+(r) and,g+(o)as a.-+ 00, it can be shown 

that G(s) c 0 bv virtue of the Liouville theorem. Therefore . . , 

‘y+ (4 = 
g+ (s) (.p + iEd 

H, (4 m (4.14) 

We obtain the exact solution of the problem by finding the original of the function 
v+(s). In order to obtain a solution suitable for practical usage, let us furthermore con- 
sider if, (s) m i. This corresponds to the function t(s, a) being approximated by Expres- 
sion 

(4.15) 

It can be proved that the error in the solution thus obtained will not exceed the error 
in approximating the function L(u, a) by (4.15). Finding the function q(r) , and retum- 
ing to the old variables and notation, we finally obtain for cases (1) and (3) (4.16) 

T (4 = 
qb (i+ El) 6 i--El 

AH_ (- i) vm 
- erf )/DI In (b/r) + 
fi ‘)/Dl-1 b - :eerf ‘)‘(Dl - 1) In (W} 

Substituting y(r) in the form (4.16) into the second relationship in (2.10). we find the 
exact value of the normal stress intensity coefficient N for r = b, 8 = 0 

q ‘)/&(I +J-W 
Nb = v/i; VI + DrH_ (- i) 

Approximating the function L(z, a) by 

L (I, a) zz 

(4.17) 

(4.18) 

for the case when condition (2).is satisfied on the wedge faces,, we obtain relationships 
to determine Y(r) and Nb which are analogous to the relationships (4.16) and (4.17) . 
Omitting intermediate calculations, we present the final expressions determining ,Y(r) 

and Nb’for the case-a = 0 and condition (2) on the wedge faces 

7 (4 = 
qr y-- 

AH_ (- i) (1 - EI’) 

- v/Dxerf ((4 - i) In +)‘3 

qovi+D¶ 
Nb = .t/z(l + Es) H_ (- i) 

(4.19) 

(4.20) 

Here H_(- i) is evaluated by means of (4.13) where N(s).has the following form in 
this case: 

H(z) = 
z vza + 0,’ 

21 + J&a L k a) (4.21) 
6. Numeric&l lnvectigrtion of the problem, Computations show that 

it is sufficient to limit oneself to a calculation of y&) and n(r) for 0 ( & ( 500% for 
any value of p = 2 (In b/a)-’ . In two cases: a = i/2 n and condition (1) ; a = IZ and 
condition (3). an exact solution of the problem is Ye(r) . The maximum deviations of 
Y&) from the exact solution are obtained for p + 6. As p increases these deviations 
diminish, and Y&) tends to the exact solution of the appropriate problem of a slot in a 
plane asp - 00 . 

Let us present values of the quantities 
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Y*(r) = A(qkly(r), N', = 2(qri2r)-l N,,, NSb = 2 M%-‘4,. 
evaluated for Q(r) = P = cmst (p(r) = qr) by means of the formulas obtained in Sections 

2 and 3 (successive approximations), Section 4 ( Wiener-Hopf method) herein, and by cor- 

responding formulas of 133 (method of large p) 

a) condition (1) 
^I* (va) N,,’ Nb* Cr 

0.110 0.332 0.332 8 

0.109 

(zero approximation) 

0.328 0.329 8 0.216 0.469 0.469 3.5 
0.200 0.433 0.441 3.5 

1 EE~ha”,&?rr&r&j 

0.202 0;435 0.443 3.5 
first ap J roximation) 

(meth of large IL ) 
0.636 - 0.900 0 (zero approximation) 
0.553 - 0.785 0 
0.567 - 0.802 0 

I first approximation) 
Wiener-Hopf method) 

The following values of the constants in approximations of the function L(u,~) were 
selected for a = 36.62’ and condition (1) : Al = 4.9, A, = 0.82, ml = 1, mr = 1.5, 

Ml = 2, D, = 2.443, El = 0.882. Here H_ (-i) = 1.0089, the error in the approxima- 
tion (2.1) does not exceed 3%. the error in the approximation (4.15) 6.5%. 

b) condition (2) 
r+ (X9?’ r+ P/28 No+ Nb+ I’ 

0:29i 1 0.537 0.528 0.547 0.541 2 2 (zero approximation) of p ) 
8 0.390 0.407 

(method large 
- 0.613 0.626 0 0 (zero approximation) 

(first approximation 
0 0.392 1 0.616 0 ( WieneFHopf method) 

c) condition (3) 
“0 (3$6@ r+ w24 N,* Nb* I’ 

- 
01326 

0.607 0.590 2 (zero approximation 
0.607 0.590 2 (method of large p ) 

1.460 I.055 
i ,456 1.051 ,- 

i .i25 0 (zero approximation) 
1.121 0 ( Wiener-Hopf method) 

The following values of the constants for approximations of the function L(u, cz) were 
selected for o = 90’ and conditions (2) and (3) on the wedge faces: B, = 1, nr = i, 
Ma = i, Ea = 0.832, Da = 1, Ai = 0 (i = 1,2 ,... ), D1 = 2,549, El = 1.652. Here 

H_(- i) = ,0.9997 for condition (2). H-(-i) = 1.0015 for condition (3), the error in the 
approximation (3.1) does not exceed 0.5%, and the error in the approximation (4.15) 
and (4.18) does not exceed 3% and 1.5%. 

In conclusion, let us note that the solution of the considered problem for small values 
of the parameter p can be obtained by utilizing the method expounded in 183. 
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The problem of the effect of a die on an elastic semi-infinite strip fixed rigidly along 
the short edge is considered. Integral equations for the contact pressure and normal stress 

P I 
at the clamping are formed. These equations 

I are reduced to two systems of linear algebraic 

equations by the Bubnov-Galerkin method. 
Both systems turn out to be well specified, and 

their coefficient matrices are almost trian- 

gular. 
Numerical computations were carried out 

for a die with a flat bottom, for an oblique 
and a parabolic die, and the high efficiency 
of the pethod was shown. 

1. Let us consider the problem of com- 
pressing a half-strip by two symmetrically 
disposed rigid dies under the following bound- 
ary conditions (Fig. 1) : 

P u=v=o, s=qfh=O 

Fig. 1 =. IYI=h-lIYII<l (1.1) 
t Xllll ’ Y=f& O(z<oo (1.2) 

$, = 0, Y=fl, 06z<c z2b (1.3) 


